Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol Glob ; 1(1): 16-21, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37780076

RESUMO

Background: Drug-induced severe cutaneous adverse reactions (SCARs) are presumed T-cell-mediated hypersensitivities associated with significant morbidity and mortality. Traditional in vivo testing methods, such as patch or intradermal testing, are limited by a lack of standardization and poor sensitivity. Modern approaches to testing include measurement of IFN-γ release from patient PBMCs stimulated with the suspected causative drug. Objective: We sought to improve ex vivo diagnostics for drug-induced SCARs by comparing enzyme-linked immunospot (ELISpot) sensitivities and flow cytometry-based intracellular cytokine staining and determination of the cellular composition of separate samples (PBMCs or blister fluid cells [BFCs]) from the same donor. Methods: ELISpot and flow cytometry analyses of IFN-γ release were performed on donor-matched PBMC and BFC samples from 4 patients with SCARs with distinct drug hypersensitivity. Results: Immune responses to suspected drugs were detected in both the PBMC and BFC samples of 2 donors (donor patient 1 in response to ceftriaxone and case patient 4 in response to oxypurinol), with BFCs eliciting stronger responses. For the other 2 donors, only BFC samples showed a response to meloxicam (case patient 2) or sulfamethoxazole and its 4-nitro metabolite (case patient 3). Consistently, flow cytometry revealed a greater proportion of IFN-γ-secreting cells in the BFCs than in the PBMCs. The BFCs from case patient 3 were also enriched for memory, activation, and/or tissue recruitment markers over the PBMCs. Conclusion: Analysis of BFC samples for drug hypersensitivity diagnostics offers a higher sensitivity for detecting positive responses than does analysis of PBMC samples. This is consistent with recruitment (and enrichment) of cytokine-secreting cells with a memory/activated phenotype into blisters.

2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417291

RESUMO

Natural killer T (NKT) cells detect lipids presented by CD1d. Most studies focus on type I NKT cells that express semi-invariant αß T cell receptors (TCR) and recognize α-galactosylceramides. However, CD1d also presents structurally distinct lipids to NKT cells expressing diverse TCRs (type II NKT cells), but our knowledge of the antigens for type II NKT cells is limited. An early study identified a nonlipidic NKT cell agonist, phenyl pentamethyldihydrobenzofuransulfonate (PPBF), which is notable for its similarity to common sulfa drugs, but its mechanism of NKT cell activation remained unknown. Here, we demonstrate that a range of pentamethylbenzofuransulfonates (PBFs), including PPBF, activate polyclonal type II NKT cells from human donors. Whereas these sulfa drug-like molecules might have acted pharmacologically on cells, here we demonstrate direct contact between TCRs and PBF-treated CD1d complexes. Further, PBF-treated CD1d tetramers identified type II NKT cell populations expressing αßTCRs and γδTCRs, including those with variable and joining region gene usage (TRAV12-1-TRAJ6) that was conserved across donors. By trapping a CD1d-type II NKT TCR complex for direct mass-spectrometric analysis, we detected molecules that allow the binding of CD1d to TCRs, finding that both selected PBF family members and short-chain sphingomyelin lipids are present in these complexes. Furthermore, the combination of PPBF and short-chain sphingomyelin enhances CD1d tetramer staining of PPBF-reactive T cell lines over either molecule alone. This study demonstrates that nonlipidic small molecules, which resemble sulfa drugs implicated in systemic hypersensitivity and drug allergy reactions, are targeted by a polyclonal population of type II NKT cells in a CD1d-restricted manner.


Assuntos
Antígenos CD1d/metabolismo , Sulfonatos de Arila/imunologia , Autoantígenos/metabolismo , Benzofuranos/imunologia , Lipídeos/imunologia , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Apresentação de Antígeno/imunologia , Antígenos CD1d/imunologia , Autoantígenos/imunologia , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia
3.
Sci Immunol ; 6(60)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172588

RESUMO

CD1c presents lipid-based antigens to CD1c-restricted T cells, which are thought to be a major component of the human T cell pool. However, the study of CD1c-restricted T cells is hampered by the presence of an abundantly expressed, non-T cell receptor (TCR) ligand for CD1c on blood cells, confounding analysis of TCR-mediated CD1c tetramer staining. Here, we identified the CD36 family (CD36, SR-B1, and LIMP-2) as ligands for CD1c, CD1b, and CD1d proteins and showed that CD36 is the receptor responsible for non-TCR-mediated CD1c tetramer staining of blood cells. Moreover, CD36 blockade clarified tetramer-based identification of CD1c-restricted T cells and improved identification of CD1b- and CD1d-restricted T cells. We used this technique to characterize CD1c-restricted T cells ex vivo and showed diverse phenotypic features, TCR repertoire, and antigen-specific subsets. Accordingly, this work will enable further studies into the biology of CD1 and human CD1-restricted T cells.


Assuntos
Apresentação de Antígeno , Antígenos CD1/metabolismo , Antígenos CD36/metabolismo , Glicoproteínas/metabolismo , Subpopulações de Linfócitos T/imunologia , Buffy Coat , Antígenos CD36/antagonistas & inibidores , Voluntários Saudáveis , Humanos , Células Jurkat , Ligantes , Lipídeos/imunologia , Cultura Primária de Células , Multimerização Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/metabolismo
5.
Cell Rep ; 31(11): 107773, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32553157

RESUMO

Vδ2+ T cells play a critical role in immunity to micro-organisms and cancer but exhibit substantial heterogeneity in humans. Here, we demonstrate that CD26 and CD94 define transcriptionally, phenotypically, and functionally distinct Vδ2+ T cell subsets. Despite distinct antigen specificities, CD26hiCD94lo Vδ2+ cells exhibit substantial similarities to CD26hi mucosal-associated invariant T (MAIT) cells, although CD26- Vδ2+ cells exhibit cytotoxic, effector-like profiles. At birth, the Vδ2+Vγ9+ population is dominated by CD26hiCD94lo cells; during adolescence and adulthood, Vδ2+ cells acquire CD94/NKG2A expression and the relative frequency of the CD26hiCD94lo subset declines. Critically, exposure of the CD26hiCD94lo subset to phosphoantigen in the context of interleukin-23 (IL-23) and CD26 engagement drives the acquisition of a cytotoxic program and concurrent loss of the MAIT cell-like phenotype. The ability to modulate the cytotoxic potential of CD26hiCD94lo Vδ2+ cells, combined with their adenosine-binding capacity, may make them ideal targets for immunotherapeutic expansion and adoptive transfer.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Interleucina-23/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subpopulações de Linfócitos T/metabolismo , Humanos , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
7.
Eur J Appl Physiol ; 117(11): 2159-2169, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28864849

RESUMO

PURPOSE: Mucosal associated invariant T (MAIT) cells have properties of the innate and acquired immune systems. While the response to vigorous exercise has been established for most leukocytes, MAIT cells have not been investigated. Therefore, the purpose was to determine if MAIT cell lymphocytosis occurs with acute maximal aerobic exercise and if this response is influenced by exercise duration, cardiovascular fitness, or body composition. METHODS: Twenty healthy young males with moderate fitness levels performed an extended graded exercise test until volitional fatigue. Peripheral blood mononuclear cells were isolated from venous blood obtained prior and immediately after exercise and were labeled to identify specific T cell populations using flow cytometry. RESULTS: The percentage of MAIT cells relative to total T cells significantly increased from 3.0 to 3.8% and absolute MAIT cell counts increased by 2.2-fold following maximal exercise. MAIT cell subpopulation proportions were unchanged with exercise. Within cytotoxic T lymphocytes (CTL), MAIT cells consisted of 8% of these cells and this remained constant after exercise. MAIT cell counts and changes with exercise were not affected by body composition, VO2peak, or exercise duration. CONCLUSIONS: Maximal exercise doubled MAIT cell numbers and showed preferential mobilization within total T cells but the response was not influenced by fitness levels, exercise duration, or body composition. These results suggest that acute exercise could be used to offset MAIT cell deficiencies observed with certain pathologies. MAIT cells also make up a substantial proportion of CTLs, which may have implications for cytotoxicity assays using these cells.


Assuntos
Exercício Físico , Linfócitos T Citotóxicos/citologia , Adulto , Humanos , Imunidade Inata , Masculino , Músculo Esquelético/fisiologia , Linfócitos T Citotóxicos/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...